optimizer directory defined, planar experiments added

parent 290b0e16
This source diff could not be displayed because it is too large. You can view the blob instead.
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
import tensorflow_probability as tfp
import matplotlib.pyplot as plt
from data_loader import load_data
from data_preprocesser import preprocess_data
from planar import Planar
from experiment import Experiment
import tensorflow.python.util.deprecation as deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False
def train(session, loss, optimizer, steps=int(1e5)):
""" optimize for all dimensions """
recorded_steps = []
recorded_losses = []
for i in range(steps):
_, loss_per_iteration = session.run([optimizer, loss])
if i % 100 == 0:
recorded_steps.append(i)
recorded_losses.append(loss_per_iteration)
if i % int(1e4) == 0:
print('Iteration {iteration}: {loss}'.format(iteration=i,loss=loss_per_iteration))
return recorded_losses
def plot_results(recorded_losses):
""" plot loss """
print('Displaying results...')
fig = plt.figure(figsize=(10,5))
x = np.arange(len(recorded_losses))
y = recorded_losses
m, b = np.polyfit(x, y, 1)
plt.scatter(x, y, s=10, alpha=0.3)
plt.plot(x, m*x+b, c="r")
plt.title('Loss per 100 iteration')
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.tight_layout()
plt.show()
def create_tensor(data, batch_size):
dataset = tf.data.Dataset.from_tensor_slices(data.astype(np.float32))
dataset = dataset.repeat()
dataset = dataset.shuffle(buffer_size=data.shape[0])
dataset = dataset.prefetch(2*batch_size)
dataset = dataset.batch(batch_size)
data_iterator = tf.compat.v1.data.make_one_shot_iterator(dataset)
samples = data_iterator.get_next()
return samples
"""
if any error on tensorflow is displayed claiming tf.float32 is not displayed,
do the following (one of them is probably enough)
** downgrade keras to 2.3.1
** replace tf.float32 with np.float32
"""
def check_version():
print(f'Tensorflow version: {tf.__version__}')
print(f'Tensorflow-probability version: {tfp.__version__}')
print(f'Keras version: {tf.keras.__version__}\n')
def main():
""" load data """
filename = 'prostate.xls'
directory = '/Users/kaanguney.keklikci/Data/'
loader = load_data(filename, directory)
loader.create_directory(directory)
data = loader.read_data(directory, filename)
print('Data successfully loaded...\n')
""" preprocess data """
fillna_vals = ['sz', 'sg', 'wt']
dropna_vals = ['ekg', 'age']
drop_vals = ['patno', 'sdate']
preprocesser = preprocess_data(StandardScaler(), fillna_vals, dropna_vals, drop_vals)
data = preprocesser.dropna_features(data)
data = preprocesser.impute(data)
data = preprocesser.drop_features(data)
data = preprocesser.encode_categorical(data)
data = preprocesser.scale(data)
print('Data successfully preprocessed...\n')
""" set Planar parameters """
tfd = tfp.distributions
tfb = tfp.bijectors
batch_size = 32
dtype = np.float32
# layers should be higher but for comparison fix layers to 2 for every initial test
layers = 2
dims = data.shape[1]
# multivariate normal for base distribution
base_dist = tfd.MultivariateNormalDiag(loc=tf.zeros(shape=dims, dtype=dtype))
learning_rate = 1e-4
steps = int(1e4)
""" initialize samples """
samples = create_tensor(data, batch_size)
""" make Planar """
bijectors = []
for i in range(0, layers):
bijectors.append(Planar(input_dimensions=dims, case='density_estimation'))
bijector = tfb.Chain(bijectors=list(reversed(bijectors)), name='chain_of_planar')
planar_flow = tfd.TransformedDistribution(
distribution=base_dist,
bijector=bijector
)
loss = -tf.reduce_mean(planar_flow.log_prob(samples))
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate).minimize(loss)
experiment = Experiment(optimizer, learning_rate, loss, steps)
keywords = ['adam', 'rmsprop', 'sgd']
for keyword in keywords:
session = tf.compat.v1.Session()
tf.compat.v1.set_random_seed(42)
experiment.change_optimizer(learning_rate, loss, keyword=keyword)
optimizer = experiment.get_optimizer()
session.run(tf.compat.v1.global_variables_initializer())
print(f'Optimizer: {optimizer.name}')
print('Optimizer and loss successfully defined...\n')
""" start training """
recorded_losses = train(session, loss, optimizer)
print('Training finished...\n')
""" display results """
plot_results(recorded_losses)
if __name__ == "__main__":
main()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment